
DSS: Discrepancy-Aware Seed Selection
Method for ICS Protocol Fuzzing

Shuangpeng Bai1,2, Hui Wen1,2(B), Dongliang Fang1,2, Yue Sun1,2,
Puzhuo Liu1,2, and Limin Sun1,2

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

{baishuangpeng,wenhui,fangdongliang,sunyue0205,liupuzhuo,
sunlimin}@iie.ac.cn

2 Beijing Key Laboratory of IOT Information Security Technology, Institute
of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. Industrial Control System (ICS), as the core of the criti-
cal infrastructure, its vulnerabilities threaten physical world security.
Mutation-based black-box fuzzing is a popular method for vulnerability
discovery in ICS, and the diversification of seeds is crucial to its perfor-
mance. However, the ICS devices are dedicated devices whose programs
are challenging to get, protocols are unknown, and execution traces are
hard to obtain in real-time. These restrictions impede seed selection,
thereby reducing the efficiency of fuzzing. Therefore, it has become our
primary goal to select a high-quality seed set containing as few seeds as
possible with extensive triggered traces.

In this paper, we present a novel automatic seed selection method
called DSS, selecting high-quality seeds for improving fuzzing efficiency.
The method is based on the observation that dissimilar response mes-
sages are generated by different device execution processes in most cases,
which helps us build the connection of messages discrepancy and exe-
cution traces discrepancy to guide DSS. Expressly, we point out that
dissimilar messages are effective indicators of different execution paths.
Therefore, choosing ICS messages with high discrepancy as seeds can
bring more initial execution traces and fewer seeds with the same seman-
tic, which are essential to black-box fuzzing. Our experiments show that
the quantity of seeds selected by DSS is significantly less than the tradi-
tional method when achieving the same trace coverage.

Keywords: ICS protocol · Fuzzing · Seed selection

1 Introduction

Industrial Control System (ICS) is a system that combines software and hard-
ware, and is widely used in critical infrastructure, such as critical manufacturing,
energy, and other fields. If the security risks are not adequately handled, it will
pose a severe threat to the real world. ICS protocol is a set of special rules
used for the interaction between industrial software in supervisory control layer
c© Springer Nature Switzerland AG 2021
K. Sako and N. O. Tippenhauer (Eds.): ACNS 2021, LNCS 12727, pp. 27–48, 2021.
https://doi.org/10.1007/978-3-030-78375-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78375-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-78375-4_2


28 S. Bai et al.

and industrial devices in control layer. It works on monitoring remote physical
devices’ status and controlling remote physical devices. ICS protocols include
open protocols and proprietary protocols. The former includes IEC 61850 and
Modbus, etc.; the latter includes S7comm and FINS, etc. The ICS protocol
has high control authority over the device, but the limited security protection
puts the industrial device at risk. In recent years, the frequency and severity of
attacks on industrial control systems have increased [18]. For example, national
power grids of Venezuela [19] and Ukraine [2] were attacked causing widespread
power outages, and the Stuxnet virus [11] attacked Iran’s nuclear facilities. These
events have shown how essential is the security of ICS devices to the real world.
Therefore, ensuring the correct implementation of the protocols in the device is
of great significance for protecting critical infrastructure.

Many traditional vulnerability discovery methods (such as static analysis and
fuzzing) have achieved good results. However, ICS device security analysis has
some restricted conditions, including industrial device programs are challenging
to get, protocols are unknown, and execution traces are hard to obtain in real-
time. Due to limited conditions, most traditional methods fail, except for black-
box fuzzing. However, as a pointless method, black-box fuzzing needs information
as a guide to test enough code traces in a limited time.

Rebert [16] points out that the quality of seeds is one of the decisive factors for
the effect of mutation-based fuzzing. While more seeds can trigger more internal
execution processes of the device, the resulting high cost of computing resources
is disproportionate to improved effectiveness. Considering this contradiction, we
define high-quality seeds as seeds with small quantities and extensive triggered
traces. Accordingly, it is our goal to select high-quality seeds from messages with
unknown semantics.

To achieve this goal, we propose DSS, a method to select high-quality seeds
for fuzzing proprietary ICS protocols. DSS reduces redundant test cases by
excluding seeds with repeated meanings, thereby improving the efficiency of
black-box fuzzing. We find that similar messages correspond to similar program
execution paths. Conversely, messages with large differences correspond to dif-
ferent program execution paths. Based on this observation, DSS select dissimilar
messages as high-quality seeds, which contains different triggered traces.

The experiment shows that our method can select high-quality seeds from
ICS messages with repeated meanings. Moreover, when the same amount of
execution paths is reached, the quantity of seeds provided by our method is
significantly less than the random method, and the proportion is only 0.7% in
the optimal situation.

Contributions. In summary, we make the following main contributions.

– We point out that dissimilar messages are effective indicators of different
execution paths. This observation provides information to reduce duplicate
seeds, thereby reducing similar test cases.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 29

– We propose a seed selection method by analyzing the discrepancy between
messages. A small number of seeds with different characteristics are obtained,
which can be used as a fuzzing corpus.

– We evaluate the effect of seed selection on Modbus and S7comm protocols.
The seeds selected by our method is significantly less than the traditional
method.

Roadmap. The remainder of this paper is organized as follows. In Sect. 2, we
provide background on the industrial control system, ICS protocol, and related
work. Then we propose our approach based on messages discrepancy in Sect. 3.
We evaluate our method and verified its effectiveness in Sect. 4. Finally, we intro-
duce how to apply our method to security analysis in Sect. 5.

2 Background

2.1 Industrial Control System

A typical industrial control system includes two parts: industrial software in
supervisory control layer and industrial devices in control layer, as shown in
Fig. 1. The industrial software sends a network request to the industrial device to
control it and requires the industrial device to return information, such as start-
stop status, current I/O value. The industrial device executes the instructions
sent by the industrial software, converts the request message into a series of
operations, and sends the response message back through the network.

Supervisory
Control Layer

Control
Layer

Physical
Layer

Read Sensors
Control Actuators

HMI
Engineering
Workstation

ICS
Protocol

Network

Read I/O

Write I/O

Motion Light Water
Temperature Electricity

Industrial
device

Software for
monitor / control

Fig. 1. Industrial control system framework.

The ICS protocol is used for the communication between industrial software
and industrial devices, and it specifies the mapping of messages to functions.
Apart from the standard protocol defined functions, many industrial manufac-
turers have expanded their products’ functions, which exceed the established
scope of the original protocol. Specifically, though some public and standard
protocols such as Modbus and IEC 61850 are widely used, many proprietary
protocols are proposed for customized features (such as controlling the start



30 S. Bai et al.

and stop, connection management, file transfer, firmware update). As a result of
being defined by various manufacturers separately, these implementations lack
the support of well-tested underlying libraries. Furthermore, some manufacturers
firmly believe that their products are only used in a network-isolated environ-
ment. Therefore, security issues are not considered well in implementation, and
the implementation has not undergone adequate safety testing. The intellec-
tualization of industrial control systems requires breaking the isolation of the
network. It is possible to expose the communication interface of the industrial
device, which brings opportunities to the attacker.

2.2 Obstacles in ICS Protocol Vulnerability Discovery

Industrial device is a kind of dedicated device, so that the vulnerability discovery
of ICS devices often faces the following situations: some internal programs of the
devices are challenging to get, protocols are unknown, and execution traces are
hard to obtain in real-time. These restricted conditions cause traditional software
vulnerability discovery methods to fail for industrial devices.

Static Binary Analysis Methods. First, static binary analysis methods, such
as static symbolic execution and static taint analysis, analyze binary programs to
find vulnerabilities. Some firmware are hard to obtain through official channels,
although some ICS manufacturers provide device firmware (such as Schneider).
Some even need to be read from flash using JTAG, which is also challenging
for industrial device. Second, the firmware needs to be decompressed to get the
binary program. Some tools can analyze standard file systems, such as binwalk
[7]. However, the extracting difficulty has increased because of the emergence of
encrypted firmware and private format firmware (such as the Schneider Modicon
series). These problems lead to the inability to guarantee the acquisition of the
program in the device. In this case, the static analysis method is not suitable.
Besides, path explosion is also one of the limitations of static analysis methods.

Generation-Based Fuzzing. Generation-based fuzzers, such as Peach [4], and
Sulley [1], need expert knowledge about protocol information, including field
structure division, range of possible values, and data dependence among fields.
Some works use automated or manual methods to analyze traffic and reverse the
protocol, such as PULSAR [5], which uses the Markov model representing the
state machine of the protocol. However, these approaches may introduce new
problems. If the protocol reverse is not comprehensive enough, the template’s
expression ability will be limited, and some input space will be missed. If there
is a misunderstanding in the reverse engineering result, it will lead to error
accumulation, resulting in many invalid mutations. Comprehensive and accurate
protocol reverse requires manual analysis, which leads to the high cost.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 31

Gray-Box Fuzzing. A gray-box fuzzer obtains the program execution paths
triggered by the current input in real-time, thereby guiding the mutation with
high efficiency. However, because it is difficult to obtain the industrial device
program’s execution paths in real-time, gray-box fuzzing methods, such as AFL
[20], cannot be used directly unless the firmware image is emulated correctly.
Some works emulate the firmware of embedded devices, such as Firmadyne [3].
Furthermore, some works combine emulation and fuzzing, such as FirmAFL [22],
BaseSAFE [15] and Frankenstein [17]. However, these works are mainly focused
on Linux and some specific RTOS systems, but not ICS devices. Emulating some
system-independent tasks functions rather than the whole system is simpler and
enough for fuzzing. The emulation needs function addresses to hook system
functions. But for VxWorks, the commonly used ICS operating system, it is
difficult to automatically get system function addresses because of the mixing
of task code and kernel code. Therefore, the correct emulation of the ICS device
requires manual analysis of the function address.

Some works use path coverage information to guide a gray-box fuzzing, focus-
ing on ICS protocol code libraries. Polar [13] based on static code analysis and
dynamic taint analysis technique, locates the function code processing state-
ments and some security-sensitive points. And then use the knowledge of these
key locations to guide the fuzzing of the ICS protocol code libraries. Peach* [14]
identifies valuable data covering the new code area based on the path informa-
tion collected during the fuzzing and then constructs a puzzle corpus to optimize
the input generation process based on cracked packet pieces. The above methods
are based on the execution path coverage for fuzzing. These methods apply to
ICS protocol libraries, but not to black-box devices. As a result, coverage-guided
gray-box fuzzing is not yet applicable.

Black-Box Fuzzing. Original black-box fuzzer generates test cases by mutating
existing messages. Due to its wide application range and low cost, this method
is often used in ICS scenarios. Because pointless mutation generates a high per-
centage of invalid test cases, it is necessary to analyze existing information to
improve efficiency.

Some emerging black-box fuzzers for the ICS protocol generate test cases
based on learning existing messages. SeqFuzzer [21] extracts format informa-
tion of the EtherCAT protocol based on deep learning and generates EtherCAT
test cases. GANFuzz [8] uses Generative Adversarial Network (GAN) to train a
generative model on Modbus protocol data, learn protocol syntax and generate
Modbus test cases. The above methods use machine learning to analyze traffic,
learn protocol knowledge, and automatically generate test cases. These methods
are suitable for black-box fuzzing, but these methods’ versatility needs to be
evaluated when applied to proprietary protocols. In addition, the above meth-
ods have potential problems. When the data distribution is unbalanced, some
information hidden in the less frequent messages can be easily missed, although
it may represent some essential special functions.



32 S. Bai et al.

Also, Kim [9] put forward a fuzzing tool for Modbus protocol. It updates the
seeds pool during the test in two conditions. The first is that the number of the
changed bytes in requests is not equal to that of responses. The second is that
response time has a significant change. However, this condition is not applicable
in some situations. For example, when reading two registers and eight registers
in Modbus, the request has only a one-byte difference in value, but the response
changes more. The two messages are considered to have passed different program
areas in the method, but they have the same function and execution process.

Table 1. Comparison of vulnerability discovery methods for ICS device

Method Requirement Challenge

Static binary analysis Acquisition of firmware/program 1© 2©
Generation-based fuzzing Expert knowledge about ICS protocol 3©
Gray-box fuzzing Acquisition of firmware/program, emulation 1© 4©
Black-box fuzzing Messages between software and device 5©
1© Non-public firmware or program. 2© Path explosion. 3© High cost of
comprehensive and accurate protocol reverse. 4© Difficulty of emulation
for ICS device. 5© Low efficiency without guidance.

In Table 1 we summarize the vulnerability discovery methods, their require-
ments when applied to ICS device, and the main challenges.

2.3 Seed Selection for Improving Fuzzing Efficiency

Black-box fuzzer is suitable for ICS test scenarios but lacks information guidance,
resulting in low efficiency. Rebert [16] studied the influencing factors of the effect
of mutation-based fuzzing, in which the quality of seeds is one of the decisive
factors. While more seeds can trigger more internal execution processes of the
device, the resulting high cost of computing resources is disproportionate to
improved effectiveness. Moreover, compared with traditional software testing,
since network-based testing is slow, there are higher requirements for fuzzing
efficiency. To ensure that, black-box fuzzers need a small number of seeds that
retain high execution path coverage.

Seeds selection in gray-box fuzzers such as AFL tools generates the seed set
using software instrumentation technique to obtain the execution traces and use
the greedy algorithm to select the optimal set. Since the program is inside the
industrial device, it is challenging to obtain instrumentation information except
for emulating firmware. Considering that the industrial device emulation is still
difficult, but the network traffics are easy to get, it is feasible to select seeds by
analyzing the relationship of message and execution trace.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 33

3 Approach

In this section, we describe our observation and method. In Sect. 3.1, we elaborate
our observation on the relationship between ICS messages and execution paths.
In Sect. 3.2, we propose calculation methods to measure the difference between
messages. In Sect. 3.3, we design a seed selection method based on the comparison
of message discrepancy.

Fig. 2. Discrepancy-aware seed selection method.

In order to facilitate subsequent explanations, the combination of a response
message and its request message is named an RR (request-response). 1©Selecting
Typical RRs. Choose typical RRs and distribute the others to the most similar
typical RR. In the Fig. 2, different letters mean different types. A darker circle
represents a typical RR, and the other lighter circles of the same color series
are similar RRs of the typical RR. 2©Scoring all RRs. For each typical RR,
score its similar RRs by comprehensively considering the discrepancy between
requests and the discrepancy between responses in the same type. In the Fig. 2,
the number in the circle means the score of the RR. The larger the number, the
lower the similarity within the same type. 3©Sort RRs. Sort RRs in descending
order of score and take out RRs one by one from the list until the expected
number is reached.

3.1 Technique Foundation

Key Observation. Our key observation is that dissimilar response messages
are generated by different device execution processes in most cases. Our strategy
is choosing dissimilar response messages for a greater probability of triggering
non-repetitive execution traces based on this observation. It should be noted that



34 S. Bai et al.

dissimilar response messages are not a sufficient condition for different execution
traces. Dissimilar messages may also trigger the same execution process.

In more detail, we divide the situation into the following four categories
according to whether the response messages in the ICS protocol are similar and
whether the traces corresponding to the messages are the same.

Same Trace with Similar Response. This type includes reading values mul-
tiple times, such as reading I/O or time. Except for a small number of changes,
the response messages of the same function remain similar. Selecting dissimilar
responses can exclude responses with the same function and ensure that the seed
set size is small.

Different Trace with Dissimilar Response. This type includes establishing
a connection, reading time, reading I/O value, writing I/O value, etc. Differ-
ent functions correspond to dissimilar responses, which means that this type of
response is bound to its function. Selecting dissimilar responses can select mes-
sages with different functions, ensuring that more original input execution paths
are covered.

Same Trace with Dissimilar Response. This type includes the function of
reading a large amount of data at one time, such as reading the value of multiple
consecutive addresses or downloading programs from the device. Because the
data part in protocol is easy to change and the structure part is relatively stable.
Taking Modbus as an example, when the request messages contain different
reading bytes, industrial devices will give back responses with different lengths.
The similarity of these responses is low, but the execution traces are basically the
same. However, in this case, request messages with the same function are similar.
Moreover, the dissimilar response is often caused by long messages, which are
rare because industrial devices need to ensure real-time performance, and most
of the packets are small in length.

Different Trace with Similar Response. This type includes some control-
ling commands and writing operations. Although the functions are different, the
response messages only contain similar and simple confirmation information.
In this case, only choosing dissimilar response messages may result in missing
response with different functions. However, if there are discernible differences
between the request messages of different functions, we can get different execu-
tion paths by selecting dissimilar requests. Otherwise, some functions may be
ignored, in the rare case where the request message and the received message
are both very similar to other messages, but the function is unique.

Statistical Results. We have counted the average execution path differences
corresponding to response messages with different similarities. In the S7comm



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 35

protocol, the top 20% most dissimilar response messages have an average execu-
tion path difference of 58.18%, and the top 20% most similar response messages
have an average execution path difference of 29.28%. In the Modbus protocol,
the top 20% most dissimilar response messages have an average execution path
difference of 69.23%, and the top 20% most similar response messages have an
average execution path difference of 33.80%.

3.2 Calculation of Discrepancy

In this part, we propose a normalized discrepancy calculation formula between
messages based on text distance. Levenshtein distance [12] refers to the minimum
number of editing operations (replacing, inserting, and deleting a character)
required to convert two strings from one to the other. The hamming distance [6]
refers to the number of different bytes at the same position in two equal-length
strings.

First, we propose a general discrepancy calculation method based on text
distance.

discrepancy = distance(str1, str2) (1)

Second, discrepancylev and discrepancyham are designed based on leven-
shtein distance and hamming distance. The range of discrepancylev is between 0
and the maximum length of two strings. Hamming distance requires two strings
to be equal in length so that the longer string needs to be curtailed to the same
length as the other before calculating. The range of discrepancyham is between
0 and the minimum length of two strings.

discrepancylev = distancelev(str1, str2) (2)

discrepancyham = distanceham(str1, str2) (3)

Third, due to the considerable value of the distance between long messages,
our method normalizes the distance to eliminate the influence of long messages.
The discrepancy ranges from 0 to 1.

discrepancylev =
distancelev(str1, str2)

len(str1) + len(str2) + 1
(4)

discrepancyham =
distanceham(str1, str2)
min(len(str1), len(str2))

(5)

3.3 Seed Selection Method Based on Discrepancy Comparison

We propose a seed selection method based on discrepancy comparison.



36 S. Bai et al.

Preprocessing. The preprocessing process generates RRs from existing net-
work traffic by completing the following steps. 1©Divide traffic into different
streams according to IP address and port. 2©Remove duplicate request messages
and their response. 3©If there are a huge number of messages with basically
repeated content, these are heartbeat packets used to confirm the survival sta-
tus of the device in the ICS protocol. These packets are deleted and will not be
analyzed later. 4©By binding the request message with its response, a series of
RRs are obtained for subsequent selection.

Selecting Typical RRs. Our method calculates and compares discrepancy
between response messages and constructs a typical-set containing RRs which
have typical responses. Each typical RR in the typical-set has a similar-list con-
taining RRs similar to this typical RR. Similar-list will be used to score RRs
later.

Algorithm 1: Constructing typical RR set
Input: Total set containing all RRs, Discrepancy threshold
Output: Typical set containing typical RRs

1 initialize p = first element of total set;
2 initialize typical set = empty set;
3 add p to typical set;
4 p = Next(p);
5 while p is not the last element of total set do
6 initialize q = first element of typical set;
7 initialize t = False;
8 while q is not the last element of typical set do
9 d = discrepancy of q.response message and p.response message;

10 if d < discrepancy threshold then
11 add p to similar list of q;
12 else
13 t = True;
14 break;

15 q = Next(q);

16 if t is True then
17 add p to typical set;
18 initialize similar list of p = empty list;

19 p = Next(p);

20 return typical set;

In Algorithm 1, add the first RR to the typical-set and traverse the remain-
ing elements. During the traversal, for each element p, calculate the minimum
difference between it and all typical-set elements. The difference is calculated by
using Eq. 4 in Sect. 3.2. If the difference is greater than the threshold parame-
ter, p is added to the typical-set, and the similar-list of p is initialized to empty.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 37

Otherwise, find the element q in the typical-set that makes the difference smaller
than the threshold, and add p to the similar-list of q.

Calculating the Optimal Threshold. In selecting typical RRs, input param-
eters include a discrepancy threshold used to control the minimum discrepancy
of typical RRs’ response messages. The minimum discrepancy determines the
number of typical RRs. An excessively high threshold will divide RRs with dif-
ferent functions into the same typical RR, causing some omissions of functions.
On the contrary, a too low threshold will divide RRs with the same function into
different typical RRs, causing repeated selection of the same function.

A smaller threshold will get more typical RRs. 1©Use random annealing
method to find the threshold that makes the number of RRs approach 100.
2©As the threshold decreases by 0.01 each time, Algorithm 1 is called repeat-
edly, and the number of typical RRs is recorded until the number of typical RRs
reaches 300. 3©Calculate the proportion of the increase in the number of typical
RRs caused by each threshold reduction, and the optimal threshold is the one
with the largest increase ratio.

Scoring All RRs. For each typical RR, calculate its minimum difference with
other typical RRs as its score. For RRs in similar-lists, our method scores them
in Algorithm 2, considering both requesting and responding information.

Algorithm 2: Scoring RRs in similar-lists
Input: Typical set containing typical RRs, Similar list of each typical RR
Output: Scores of each RR in similar-lists

1 initialize t = first element of typical set;
2 while t is not the last element of typical set do
3 initialize similar list = similar list of t;
4 initialize p = first element of similar list;
5 while p is not the last element of similar list do
6 initialize other l = similar list t without p;
7 p.score response = min response discrepancy of p and RRs in other l;
8 p.score request = min request discrepancy of p and RRs in other l;
9 p = Next(p);

10 response l = similar list sorted in descending order of score response;
11 request l = similar list sorted in descending order of score request;
12 p = first element of similar list;
13 while p is not the last element of similar list do
14 if response l.index(p) < request l.index(p) then
15 p.score = p.score response;
16 else
17 p.score = p.score request;

18 t = Next(t);



38 S. Bai et al.

For each RR, in Algorithm 2, calculate the minimum discrepancy between
the RR and the others in the same similar list. The discrepancy includes the dis-
crepancy between request messages and between response messages. And then,
sort the similarity list in descending order to generate request-list/response-list
by the minimum discrepancy of request/response messages. Finally, the score
is equal to the minimum discrepancy of the request messages if the RR index
in the request-list is smaller than the index in the response-list. Otherwise, the
minimum discrepancy of the response messages is used as the score. If any of the
RR’s request or response message is unique, the RR will get a high score through
the above steps. Otherwise, our method considers the RR has a low possibility
to trigger new execution traces.

Sort RRs. The higher the score of RR is, the more likely it is to be unique. Sort
typical RRs in descending order by scores, and do the same for RRs in similar-
lists so that RRs with different execution paths are placed first. Concatenate
two sorted lists, with typical RRs first, and then our method can take out RRs
one by one from the list until the expected number is reached. Choosing more
messages can get higher coverage before reaching full coverage. In actual use, the
selected number depends on the estimated computing resources and allowable
time consumption.

4 Evaluation

4.1 Experiment Setup

Analysis Target. Since the device’s program cannot be directly used for analy-
sis, we choose common industrial protocol code libraries for analysis. The public
library used here is only to evaluate the effectiveness of our method and does not
limit the scope of the application of our method. The ICS protocol library used for
the experiment has the requirements, including the library implements a server
program, and the server can normally work under instrumentation. For the Mod-
bus protocol, our analysis is based on the unit-test-server provided by the libmod-
bus library. And for the S7comm protocol, we use the server in the snap7 library.

Legitimate Messages Acquisition. The messages need to match the server
software. Otherwise, the requests may look legitimate, but the server cannot parse
and respond them correctly. For example, in the Modbus protocol, the used I/O
addresses need to be defined in the server; otherwise, an error will be notified.
Therefore, many packets that can be correctly parsed by the mentioned software
are needed for experiments. To emulate these packets in an industrial control sys-
tem, we obtain notwork traffic by expanding the original input. 1©Perform byte-
by-byte mutation on the original industrial control data packet to generate legiti-
mate and illegitimate data packets. 2©Send these packets to the server and record
the response. 3©Mark packets which are parsed as legitimate by Wireshark. Use
thesemarked packets as subsequent candidates, and discard those illegitimate data



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 39

packets. The basis for the above operation is that if the device response to our
request with a non-abnormal response, it means that the device has correctly exe-
cuted the request, which also means that the request is legitimate.

Besides, some ICS protocols need to maintain communication status. For
example, the S7comm protocol requires “Setup communication” before reading
and writing, and the Modbus protocol defines a serial number. For this kind
of protocol, we need to send predecessor messages before sending a mutated
message to ensure the test case can be parsed correctly. The status may be
defined in some protocols but not mandatory to implement in code. For example,
the server provided by libmodbus does not handle the serial number; that is, the
test case can be sent directly without considering its predecessor data.

For the unit-test-client and unit-test-server provided by the libmodbus
library, the experiment mutates the original traffic to expand the execution space.
The number of edges before the expansion is 133, and after the expansion is 185,
an increase of 38.1%. For the snap7 library, the number of edges changes from
199 to 734, an increase of 268.8%. Table 2 provides a comparison between the
original message function and the expanded function. It is worth noting that
because the original input “Start upload” function was not implemented in the
server, the request for this function returned an error, which was detected by
Wireshark and filtered out.

Table 2. Summary of functions under testing

Modbus S7comm

Function Change Function Change

Read Coils Unchanged Setup communication Unchanged

Read Discrete Inputs Unchanged CPU→Read SZL Unchanged

Read Holding Registers Unchanged Start upload Disappear

Read Input Registers Emerge Read Var Unchanged

Write Single Coil Unchanged CPU→Message service Emerge

Write Single Register Unchanged Write Var Emerge

Write Multiple Coils Unchanged Time→Read clock Emerge

Write Multiple Registers Unchanged PLC Stop Emerge

Report Slave ID Emerge Block→List blocks Emerge

Mask Write Register Unchanged Security→PLC password Emerge

Read Write Register Unchanged

Binary Instrumentation. The execution path triggered by the network
request needs to be obtained to evaluate the seed selection method’s effective-
ness. The instrumentation of ICS protocol libraries is only for the experiment.
When faced with real industrial control devices, it is too challenging to achieve.

First, we limit the recorded address to the code segment of the target pro-
gram. This limitation is to prevent instrumentation of the code of system library



40 S. Bai et al.

functions. These functions will generate many execution paths with low relevance
to ICS protocols, and their security has been extensively studied. If these system
library functions are not precluded, irrelevant information will be introduced,
which will confuse subsequent analysis.

Second, the industrial control server often has multiple threads working
simultaneously, including accepting network requests, running industrial con-
trol functions, and sending data packets. Therefore, we instrument all threads
and record them separately. For each thread, the execution path is obtained by
sequentially recording the basic block’s first address.

Third, due to protection measures such as ASLR, the addresses obtained by
the instrumentation are random and cannot be directly compared. In order to
align these instrumentation results, we process each execution as follows: Take
the first address of the first basic block of the first thread as the base address,
and record the offset of each address executed to the base address.

Finally, every two consecutive basic blocks’ addresses are combined as an
edge, and all edges executed this time are added to a set. This set represents
the code execution path of this message. Remove edges that can be triggered in
all messages, which are not related to the function.

Evaluation Setting. As mentioned earlier, each path is transformed into a
set, with internal elements as edges. To measure the quality of the selected
seeds, we propose edge coverage as a measurement standard, which refers to
the proportion of edges provided by the selected seeds. The higher the coverage,
the more representative the seeds we choose; the lower the coverage, the more
functions we have missed.

Besides, we compare the effectiveness of the methods by comparing the num-
ber of seeds required between different methods to achieve the same coverage.
Use the ratio of the quantity required by Method A to the quantity of Method
B as the measurement standard when reaching the same coverage. If the ratio
exceeds 1, the performance of method A is better than method B. On the con-
trary, it shows that the B method is better. When the ratio is close to 1, the
performance of the two methods is similar.

4.2 Message Similarity and Trace Similarity

We use the following steps to verify whether dissimilar messages indicate dif-
ferent execution paths. 1©Select dissimilar messages by Algorithm 1 and use
discrepancylev as the discrepancy. Giving RR sequences in different orders and
random thresholds, many message combinations, whose internal messages are
dissimilar to each other, can be obtained. Calculate the number of non-repeated
edges corresponding to each combination; the higher the number, the less similar
the execution path. 2©Randomly select messages and count the number of corre-
sponding edges. Random sampling is performed with different selection numbers,
respectively. 3©Compare the corresponding edge coverage of dissimilar messages
and random messages.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 41

Fig. 3. Coverage of dissimilar messages and random messages in Modbus.

Fig. 4. Coverage of dissimilar messages and random messages in S7comm. (Color figure
online)

As shown in Fig. 3 and Fig. 4, dissimilar message combinations correspond to
a higher number of edges, meaning divergent execution path combinations are
selected. More specifically, because the Modbus protocol is relatively simple, a
combination of 250 dissimilar messages is sufficient to correspond to 95% of the
execution path. At the same number of messages, random combinations that
close to the same execution path just account for a small proportion. When
the coverage is the same, the points corresponding to dissimilar packets are
clustered on the figure’s left edge, which means that fewer packets are needed.
In the S7comm protocol, the effect is more significant. When the number of
elements of the combination is about 100, the edge coverage of dissimilar packets
has reached 80%, while the highest coverage of random packets is less than 50%.
Besides, it can be drawn from the figure that it is difficult to obtain high coverage
for random messages unless using a vast number of messages.



42 S. Bai et al.

There is an apparent separation between the blue dots in each figure, and a
small part of the dots are in the position where the number of packets is higher
than most dots. This separation is because the minimal degree of discrepancy
discrimination brings a significant increase in the number of messages in the
combination.

Table 3. Average coverage in dissimilar messages and random messages

Modbus S7comm

Range Dissimilar Random ↑ratio Range Dissimilar Random ↑ratio

0–100 0.81 0.69 16.6% 0–100 0.49 0.36 34.7%

100–200 0.96 0.79 20.4% 100–200 0.80 0.42 89.7%

200+ 0.96 0.83 15.6% 200+ 0.83 0.45 84.6%

As shown in the Table 3, in each range, the average edge coverage of dissimilar
messages is more than that of random messages. Furthermore, due to the slow
rise of the Random method ’s effect, it must choose a disproportionate number
of messages to achieve the same effect. In summary, this experiment shows that
dissimilar messages are effective indicators of different execution paths.

4.3 Comparing with Traditional Method

A seed selection experiment is performed from the data packets obtained during
the experiment preparation process in 4.1. Evaluate the performance of seed
selection methods compared with Random method.

Seed selection methods include Hamming method (based on discrepancyham)
and Levenshtein method (based on discrepancylev). The Random method counts
the average, maximum, and minimum values of edge coverage of randomly
selected message for 100 times each number. The experiment evaluated the effec-
tiveness of the seed selection method on Modbus and S7comm protocols. The
edge coverage here refers to the proportion of edges triggered by the selected
seed to the edges triggered by all to-be-selected messages.

Fig. 5. Edge coverage in Modbus.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 43

Fig. 6. Edge coverage in S7comm.

Figure 5 and Fig. 6 show that when the number of seeds is the same, the
method based on discrepancy comparison can get more edges than the Random
method, no matter which distance algorithm is based on. Each small picture
represents an independent experiment based on different data, showing that the
effect is robust.

Table 4. Compare with traditional method in Modbus

Levenshtein Hamming Random

Coverage-0.75 48(41,58) 67(27,145) 64(38,94)

Coverage-0.80 49(42,59) 107(29,147) 143(81,215)

Coverage-0.85 49(42,59) 111(40,147) 314(209,390)

Coverage-0.90 49(42,59) 113(44,150) 648(336,838)

Coverage-0.95 61(42,96) 201(158,227) 3722(870,5720)

Table 5. Compare with traditional method in S7comm

Levenshtein Hamming Random

Coverage-0.75 66(62,70) 197(193,200) 8676(8242,9055)

Coverage-0.80 146(64,306) 773(202,1848) 10781(10259,11187)

Coverage-0.85 797(188,1940) 2273(1364,2733) 13619(12982,14142)

Coverage-0.90 3193(1760,5658) 5188(3548,6043) 17433(17100,17655)

Coverage-0.95 9039(8371,9899) 14272(9029,20051) 22371(22238,22485)

The experiment also evaluates the number of seeds required by different
methods when the same coverage is reached. Among them, the smaller the num-
ber, the better the seed selection performance. As Shown in Table 4 and Table 5,
in both Modbus and S7comm protocol experiments, the order of the effects of
methods is Levenshtein method > Hamming method � Random method. Specif-
ically, when achieving the same effect, the Levenshtein method provides about
60 seeds, which is only 0.76% to 1.64% of the traditional method.



44 S. Bai et al.

4.4 Comparing with Guiding Method

In this part, we evaluate the effect by comparing the Levenshtein method (with-
out protocol information) and the Guiding method (using the protocol function
code information). The Guiding method emulates the situation of obtaining the
protocol function code correctly by manual or automatic protocol reverse engi-
neering. Owing to this method is guided by function code information, it is called
the Guiding method. The Guiding method classifies the messages according to
the function code specified by Wireshark and then selects messages from differ-
ent functions each time. It should be noted that this method is only designed for
comparison with our method and cannot be directly applied to real situations.
As proprietary protocols cannot be parsed in Wireshark, obtaining information
about function codes in the real world requires much extra work.

In the Modbus experiment, both Levenshtein method and Guiding method
are significantly better than the Random method, and the Guiding method is
slightly better than Levenshtein method. This small gap shows that our method
adaptively learns the function code information of Modbus. As shown in Fig. 7,
the effect of the Guiding method is very significant, indicating that for the Mod-
bus protocol, function code information can distinguish functions well. Under the
same function code, there are relatively few different traces. The average number
of trace types for each function code is 3.4, so that the information provided by
the function code is sufficient for efficient seed selection. The function-code-based
Guiding method can quickly achieve complete coverage of the original edges.

Fig. 7. Comparison of Levenshtein method and Guiding method in Modbus.

In the S7comm experiment, as shown in Fig. 8, the Levenshtein method and
Guiding method have similar effects when coverage less than 0.7, which signifi-
cantly better than theRandommethod. But when the coverage is higher, theGuid-
ing method ’s effect begins to deteriorate until it is close to the Random method.
However, our method is still significantly better than those methods. This is
because the S7comm protocol is more complicated so that the function code pro-
vides insufficient information. There are relatively more different traces under the
same function code, and the average trace type number of each function code is



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 45

Fig. 8. Comparison of Levenshtein method and Guiding method in S7comm.

30.8. This leads to the fact that only using function code information is not enough
to select seeds with high coverage. The experiment also shows that our method can
learn more complex protocol information than function codes. Therefore, it is also
effective for more complex protocols and has universality for ICS protocols.

5 Discussion

In the previous sections, we propose the seed selection method DSS and evaluated
it. In this part, we will introduce how DSS is applied to security analysis. It
has been verified that DSS can provide high-quality seeds for mutation-based
fuzz testing. Besides, the core algorithm of DSS can also be applied to other
proprietary protocol security analysis because of its ability to extract messages
with different meanings. We will introduce three application scenarios, including
the main application: mutation-based fuzzing, and two other scenarios: test case
reduction and protocol reverse engineering.

Fig. 9. Framework of fuzzing prototype using seed selection method



46 S. Bai et al.

5.1 Mutation-Based Fuzzing

To show how our method can be applied to fuzzing, we briefly describe the
workflow, as shown in Fig. 9, there are two main steps in fuzzing: selecting seeds
and testing a seed.

In selecting seeds stage, there are the following three processes. 1©Record the
IP, port, and message information of each interaction in real work scenarios in
the Network traffic collection module. 2©Combine each request message and its
response message to generate RRs in the Initialization module. 3©Using method
elaborated in Sect. 3.3 to select high-quality seeds in the Seed selection module.
The detailed steps have been elaborated in Sect. 3.

In testing a seed stage, there are the following four processes. 1©Mutate
the seed to generate test cases in Mutation module. 2©Establish a connection
with the industrial device in the Communication module so that the fuzzer can
interact with the device. 3©Monitor the ICS device’s status to determine whether
it is working correctly in the Monitoring module. 4©Record messages and events
during the fuzzing in the Logging module. Since this fuzzer is based on a small
number of seeds with high coverage, it will explore more program execution
paths in a shorter time, and then efficiently discover vulnerabilities.

5.2 Reduction of Test Cases

Our method can also be used in another security testing process: reduce test
cases, shown in Fig. 10. 1©Fuzz an ICS device that using a proprietary protocol
and record all the messages in this process as test cases. 2©Transform these
request and response messages to RRs and use the method proposed in Sect. 3.3
to select test cases with different meanings. 3©Use these chosen test cases to test
other devices using the same proprietary protocol.

Fig. 10. Framework of reducing test cases

Devices using the same proprietary protocol generally have similar execution
processes and similar causes of vulnerabilities. Therefore, if some previously used
messages can efficiently test a device’s code area, these messages can also effi-
ciently trigger another device’s logic, which uses the same protocol. We use
Algorithm 1 to select representative messages for testing, reducing many
repeated test cases to improve efficiency.



DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing 47

5.3 Protocol Reverse Engineering

There is a step in protocol reverse engineering called message type identification
[10], which aims at dividing the message into different categories for next step,
analyzing each category’s specific protocol format. Our method also has the
ability to classify messages, as shown in Fig. 11. The following will introduce
how it assists in protocol reverse engineering. 1©Convert the messages to RRs.
2©Use Algorithm 1 to process all RRs to get the typical-set and the similar-list
of each typical RR. 3©The classification is completed by treating the packets in
the same similar-list as the same type.

Fig. 11. Application in message type identification for protocol reverse engineering

6 Conclusion

We introduce DSS, a discrepancy-aware seeds selection method for ICS protocol
fuzzing. DSS compares ICS messages to determine whether they trigger the
same execution path, thereby selecting a high-quality seed set containing a small
number of seeds but obtaining high edge coverage. The DSS is suitable for black-
box industrial devices and proprietary protocol scenarios, where many methods
cannot be applied.

When achieving the same trace coverage, the seeds selected by the Leven-
shtein method is significantly less than the traditional Random method, and the
proportion is only 0.7% in the optimal situation. Fuzzing based on the high-
quality seeds selected by the Levenshtein method can test core code traces in a
limited time.

Acknowledgement. This paper is supported by the science and technology project of
State Grid Corporation of China: “Research on 5G Electric Power security protection
system and key technology verification” (Grant No. 5700-202058379A-0-0-00).

References

1. Amini, P., Portnoy, A.: Sulley fuzzing framework (2010)
2. Case, D.U.: Analysis of the cyber attack on the Ukrainian power grid. Electricity

Information Sharing and Analysis Center (E-ISAC) 388 (2016)



48 S. Bai et al.

3. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-
ysis for linux-based embedded firmware. In: NDSS, vol. 16, pp. 1–16 (2016)

4. Eddington, M.: Peach fuzzing platform. Peach Fuzzer 34 (2011)
5. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: Pulsar: stateful

black-box fuzzing of proprietary network protocols. In: Thuraisingham, B., Wang,
X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 330–347.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 18

6. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Techn. J.
29(2), 147–160 (1950)

7. Heffner, C.: Binwalk: firmware analysis tool (2010). https://code.google.com/p/
binwalk/. Visited 03 Mar 2013

8. Hu, Z., Shi, J., Huang, Y., Xiong, J., Bu, X.: GANfuzz: a GAN-based industrial
network protocol fuzzing framework. In: Proceedings of the 15th ACM Interna-
tional Conference on Computing Frontiers, pp. 138–145 (2018)

9. Kim, S., Cho, J., Lee, C., Shon, T.: Smart seed selection-based effective black box
fuzzing for IIoT protocol. J. Supercomput. 76, 1–15 (2020)

10. Kleber, S., Maile, L., Kargl, F.: Survey of protocol reverse engineering algorithms:
decomposition of tools for static traffic analysis. IEEE Commun. Surv. Tutorials
21(1), 526–561 (2019). https://doi.org/10.1109/COMST.2018.2867544

11. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011)

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

13. Luo, Z., Zuo, F., Jiang, Y., Gao, J., Jiao, X., Sun, J.: Polar: function code aware
fuzz testing of ICS protocol. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s),
1–22 (2019)

14. Luo, Z., Zuo, F., Shen, Y., Jiao, X., Chang, W., Jiang, Y.: ICS protocol fuzzing:
coverage guided packet crack and generation. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE (2020)

15. Maier, D., Seidel, L., Park, S.: BaseSAFE: baseband sanitized fuzzing through
emulation. In: Proceedings of the 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, pp. 122–132 (2020)

16. Rebert, A., et al.: Optimizing seed selection for fuzzing. In: 23rd USENIX Security
Symposium (USENIX Security 14), pp. 861–875 (2014)

17. Ruge, J., Classen, J., Gringoli, F., Hollick, M.: Frankenstein: advanced wireless
fuzzing to exploit new Bluetooth escalation targets. In: 29th USENIX Security
Symposium (USENIX Security 20), pp. 19–36 (2020)

18. Slowik, J.: Evolution of ICS attacks and the prospects for future disruptive events.
Threat Intelligence Centre Dragos Inc. (2019)

19. Vaz, R., et al.: Venezuela’s power grid disabled by cyber attack. Green Left Weekly
(1213) 15 (2019)

20. Zalewski, M.: American fuzzy lop (2014)
21. Zhao, H., Li, Z., Wei, H., Shi, J., Huang, Y.: SeqFuzzer: an industrial protocol

fuzzing framework from a deep learning perspective. In: 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST), pp. 59–67. IEEE (2019)

22. Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L.: FIRM-AFL: high-
throughput greybox fuzzing of IoT firmware via augmented process emulation. In:
28th USENIX Security Symposium (USENIX Security 19), pp. 1099–1114 (2019)

https://doi.org/10.1007/978-3-319-28865-9_18
https://code.google.com/p/binwalk/
https://code.google.com/p/binwalk/
https://doi.org/10.1109/COMST.2018.2867544

	DSS: Discrepancy-Aware Seed Selection Method for ICS Protocol Fuzzing
	1 Introduction
	2 Background
	2.1 Industrial Control System
	2.2 Obstacles in ICS Protocol Vulnerability Discovery
	2.3 Seed Selection for Improving Fuzzing Efficiency

	3 Approach
	3.1 Technique Foundation
	3.2 Calculation of Discrepancy
	3.3 Seed Selection Method Based on Discrepancy Comparison

	4 Evaluation
	4.1 Experiment Setup
	4.2 Message Similarity and Trace Similarity
	4.3 Comparing with Traditional Method
	4.4 Comparing with Guiding Method

	5 Discussion
	5.1 Mutation-Based Fuzzing
	5.2 Reduction of Test Cases
	5.3 Protocol Reverse Engineering

	6 Conclusion
	References




